

The Role of Distributed Resources in a Renewable Electricity Future

James Newcomb Rocky Mountain Institute

Distributed Innovation

Saves Big

- Incorporating demand response and efficiency into forward capacity procurement
- Recent round chose 12.4 GW of DR plus 1.1 GW of efficiency
- Just in August 2012, PJM customers saved \$650 million due to demand response, including \$230 million on August 2 alone.

What is possible from distributed resources

- Efficiency: \$850bn supply-side cost savings
- Distributed renewable supply: 30–40% of total generation
- Flexibility resources:
 - ➤ Demand response 16–24% of peak
 - Distributed thermal and electricity storage
 - Integrated EV charging

Analyzing the options:

- 1. Measure the full range of costs and benefits for distributed energy resources.
- 2. Analyze trade-offs between centralized and distributed resource portfolios.
- 3. Integrate distributed energy resources into resource planning processes (create an **ID**RP).

Revamping the rules of the game to level the playing field:

- 4. Create new electric utility business models for a distributed resource future.
- 5. Adapt wholesale markets to allow distributed resources to compete.

Encouraging innovative technologies and service models

- 6. Enable microgrids and virtual power plants to support integration and aggregation of distributed resources.
- 7. Drive down "soft costs" for solar PV by streamlining permitting and interconnection procedures.
- 8. Encourage smart electric vehicle charging.

Discussion

Have further questions?
James Newcomb
Rocky Mountain Institute
jnewcomb@rmi.org

www.AmericasPowerPlan.com