The Changing Role of Architects in a Built Environment (trending) NZE

NBI Getting to Zero National Forum: A Presentation by Clark Brockman, SERA Architects

September 17, 2013

PORTLAND OREGON

POPULATION: 603,106 (METRO: 2,226,009) LATITUDE: 45.5236° N METRO LAND AREA: ~770 Square Miles

CLIMATE PORTLAND - TEMPERATURE / HUMIDITY

Data Source: TMY3 726980 WMO Station Number Location: Portland Intl. Airport

CLIMATE PORTLAND TEMPERATURE BINS (6AM-7PM, M-F)

WHY BUILDINGS?

Greenhouse Gas Emissions

Source: Architecture 2030, based on statistics from Energy Information Administration

ARCHITECTURE 2030 REDUCTIONS IN BUILDING FOSSIL FUEL USE

Source: Architecture 2030, based on statistics from Energy Information Administration * USING NO FOSSIL FUEL GHG-EMITTING ENERGY TO OPERATE

http://architecture2030.org/the_solution/solution_energy

AIA 2030 COMMITMENT

http://network.aia.org/2030Commitment/Home/

SERA 2011 EUI REPORTING

SHADES OF GREEN

LIVING BUILDING CHALLENGE[™] 2.0

A VISIONARY PATH TO A RESTORATIVE FUTURE

http://living-future.org/

ENERGY USE PREDICTED vs. ACTUAL (121 LEED BUILDINGS)

"ESSENTIALLY, ALL MODELS ARE WRONG, BUT SOME ARE USEFUL"

- George E.P. Box

Gravesend, Kent, U.K.

PREDICTED vs. ACTUAL ENERGY USE OF LEED BUILDINGS

Source: New Buildings Institute: Energy Performance of LEED NC Buildings, 2008

ENERGY USE REALITY

REMEMBER, BUILDINGS DON'T USE ENERGY, PEOPLE DO.

ENERGY USE PREDICTED vs. ACTUAL

STATE ENERGY CODES NEED MORE CONSISTENCY

BCAP Dedicated to the adoption, implementation, and advancement of building energy codes Get all the most up-to-date code status maps and other valuable resources at www.bcap-ocean.org NOTE: These maps reflect only mandatory statewide codes currently in effect.

REPORTING ENERGY USE REPORTING LABELS

EU DISPLAY ENERGY CERTIFICATE

ZEPI SCALE

USA ASHRAE BUILDING ENERGY QUOTIENT

REPORTING REQUIRED ENERGY USE REPORTING

OUTCOME BASED CODES FOCUSED ON ACTUAL PERFORMANCE

EDITH GREEN-WENDELL WYATT FEDERAL BUILDING

THE NEXT STAGE OF THE JOURNEY: Commissioning and Performance-Based Occupancy and Operations

June 7, 2013 GSA Region 10 Update

PROJECT TEAM

Owner:

GSA

A/E Team:

SERA Cutler Anderson Architects

SERA ARCHITECTS

CUTLER ANDERSON ASSOCIATES

STANTEC

INTERFACE

PAE

KPFF

ATELIER DREISEITL

CMc Team: HOWARD S WRIGHT

BENSON

McKINSTRY

DYNALECTRIC

OTIS

NUPRECON

EDITH GREEN-WENDELL WYATT

ARRA and EISA MINIMUM PERFORMANCE CRITERIA

Energy Star Requirements	Water Conservation Requirements	Energy Conservation Requirements	LEED Requirements
Score goal: 97	20% Indoor potable water reduction50% Outdoor potable water reduction	 55% Fossil fuel reduction 30% Energy usage reduction 30% Solar thermal 	Gold Required Platinum Goal
ENERGY STAR			

EDITH GI

ANALYSIS BUIDLING ORIENTATION

Transform a 512,400 square foot, 18-story, 1974 office building into a LEED Platinum cornerstone of GSA's green building portfolio.

BUDGET: \$141,000,000

ENVELOPE STUDY SURROUNDING BUILDINGS

June 21 **8** am

ENVELOPE STUDY SHADING FROM ADJACENT BUILDINGS

SHADING STUDY HELIOON TESTING

% annual shading, south facade

DAYLIGHT STUDY

Daylight Factor min/max ratio 16 ft perimeter zone

STUDY RESULTS A HYBRID SOLUTION

Thermal analysis

- Percentage glazing
- Shading

Daylight analysis

- Surrounding buildings shading
- Building integrated shading
- Interior light quality
- Energy savings

Ongoing Studies

Energy Sensitivity Analysis

DATA DRIVEN DESIGN FROM STUDY TO DESIGN TO CONSTRUCTION

DESIGN/ANALYSIS EAST & SOUTH ELEVATION STRATEGIES

Summer mid-day sun (high angle)

Low Glazing to Wall Ratio 40% glazing

Low Infiltration Rate 0.06 CFM

Well-Insulated Wall

Daylighting Light shelves bounce light 16ft. into interior Equinox morning sun (lower angle)

DESIGN/ANALYSIS WEST ELEVATION SHADING STRATEGY

Shading reduces the heat gain on the building minimizing the energy needed for cooling.

West Facade

Reeds provide avg. 50% shading

South & East Facades Combination vertical + horizontal shades

North Facade No shading

PORTLAND DOWNTOWN AREA NETWORK

EGWW NET ELECTRICITY

DAILY SOLAR HARVEST

EGWW OPPORTUNITY LOST

More than 35% of possible production is lost

ANNUAL SOLAR HARVEST

NETWORKS ARE EVERYWHERE

0

SIREC SKANSKA PAE

AFTERCARE TUNING PERFORMANCE

POST OCC STUDIES CBE, LBNL, M+V, MODELS and more...

TENANT ORIENTATION TRAINING AND MILESTONES

TENANT DESIGN PROCESS

TENANT ORIENTATION TRAINING SYMPOSIUM

KNOW YOUR BUILDING

- Design History
- Systems and Strategies
- Sustainability Goals

KNOW YOUR IMPACT

- Occupant Behavior
- Shared Resources

KNOW YOUR NEIGHBORS

- Property Manager
- Green Team / Tenant Agencies

POST OCC EVALS OCCUPANT SATISFACTION SURVEYS

BEFORE & AFTER MOVE

Survey 3 largest agencies in their Existing Office spaces:

- First & Main Building 2010 Class-A office building LEED-C&S Platinum One block away from EGWW
- Robert Duncan Plaza 1991 office building Downtown Portland

POST OCC EVALS OCCUPANT SATISFACTION SURVEYS

INDOOR ENVIRONMENTAL QUALITY (IEQ)

- Thermal Comfort
- Lighting / Daylighting
- Indoor Air Quality
- Acoustics
- + Office Layout, Furnishings & General Satisfaction

Thermal Comfort

How satisfied are you with the temperature in your workspace? Very Satisfied 🕼 🚺 🖉 o noncol 🎲 Very Dissatisfied

Overall, does your thermal comfort in your workspace enhance or interfere with your ability to get your job done? Enhances 🖧

Air Quality

How satisfied are you with the air quality in your workspace (i.e. stuffy/stale air, cleanliness, odors)? Very Satisfied a cccccc Very Dissatisfied

Overall, does the air quality in your workspace enhance or interfere with your ability to get your job done?

Enhances 🕼 💿 င င င င င 🖸 🍢 Interferes

University of California, Berkeley – Center for the Built Environment (CBE)

POST OCC EVALS PHYSICAL MEASUREMENTS

INDOOR ENVIRONMENTAL QUALITY (IEQ)

- Thermal Comfort
- Electric Lighting
- Daylighting
- Indoor Air Quality
- Acoustics

CORRELATE TO DESIGN

- IEQ parameters Lighting & Daylighting Studies Acoustics expectations Thermal Comfort Study
- Energy model assumptions

a) Photo of pole

b) Temperature vs. height

Figure 20. East interior zone stratification pole and example hourly temperature profiles, 9/14/2011.

Figure 21. East perimeter zone stratification pole and example hourly temperature profiles, 9/14/2011.

University of California, Berkeley – Center for the Built Environment (CBE)

COMMISIONING ONGOING TUNING & OPTIMIZATION

SEASONAL TUNING

CALIBRATE ENERGY MODEL

CONNECT TO MEASUREMENT & VERIFICATION

 Tie into M&V and energy modeling cross-walk

TIE-IN WITH POST OCCUPANCY EVALUATIONS

 Involvement in corrective Action plan from occupant satisfaction

ONGOING M&V ENERGY & WATER PERFORMANCE

ENERGY END USE METERS

Major systems submetered

CORRELATE ACTUAL PERFORMANCE TO DESIGN

 Cross walk to early design energy model

CALIBRATED MODEL FOR ONGOING OPTIMIZATION

WATER CALCULATOR

- Potable Water Use
- Rainwater catchment & Reuse

OREGON SUSTAINABILITY CENTER LIVING BUILDING CHALLENGE

PUBLIC / PRIVATE PARTNERSHIPS

OSC Board:

- City of Portland Bureau of Planning and Sustainability
- Oregon University System
- Portland State University
- Portland Development Commission
- Oregon Living Building Initiative
- Plus dozens of other organizations, researchers, companies and others

SITE PLAN

ENERGY CHALLENGE FLOOR TO ROOF AREA

ENERGY USE BEFORE TENANT ENGAGEMENT

ENERGY DISTRIBUTION WITH TENANT ENGAGEMENT

FEEDBACK MECHANISMS "FRACTAL DASHBOARDS"

BUILDING FAÇADE

Compare to other buildings

BUILDING LOBBY

Compare floors within the building

DEPARTMENT/OFFICE

Create inter-office competition

INDIVIDUAL

Understand personal contribution

FEEDBACK MECHANISMS INFORMATION SOURCES

BUILDING LOBBY

Smart Grid Connections

BUILDING FAÇADE

Building Management System

DEPARTMENT/OFFICE

Utility Submetering

INDIVIDUAL

Plug Load Monitors

RESEARCH A LIVING LABORATORY

Knowledge and products to pursue net zero energy, net zero water, and use local green materials

building dashboard 7.

2030

Q -

FLOW

5

Seattle 2030 District MAP Unior Sm ۲ SEATTLE Square 5 Hubbell PI Inion 611 TRICT Bayman University SI 5 Seneca 99 51 CH2 (Western Ave 1201 Third Avenue Seattle POWERED BY 1111 Third Google Park Central Library Avenue Map data @2012 Google, Sanborn - Terms of Usa

Homepage

Welcome to the Seattle 2030 District, a ground-breaking, high-performance building district in downtown Seattle. By targeting a district-wide reduction in energy and water use in buildings and CO2 emissions from commute trips, we will work collaboratively to meet a 50% energy reduction by the year 2030. The progress below represents actual data tracking of these three metrics in the Seattle 2030 District member base:

- 23.6 million Square Feet of Building Space - 73 Buildings - Office, City, County, Hotel, and Healthcare

OPTIMAL SCALES ENERGY

OPTIMAL SCALES WASTE

OPTIMAL SCALES ALL

EcoDistricts Institute

PILOT ROADMAP

http://www.sera-architects.com/blog/wp-content/uploads/documents/Making_EcoDistricts.pdf

CONTRIBUTIONS

EcoDistricts Institute: <u>http://ecodsitricts.org/</u>

Arup: <u>http://www.arup.com/</u>

Sherwood Design Engineers: http://www.sherwoodengineers.com/ International Living Future Institute: http://living-future.org/ Living Building Challenge: http://tinyurl.com/Living-Building-Challenge Living Building Challenge Financial Study: http://living-future.org/node/265 Achieving Water Independence in Buildings: http://living-future.org/node/275

Code and Regulatory Barriers to the Living Building Challenge for Sustainable, Affordable, Residential Development (SARD): <u>http://tinyurl.com/Code-and-Regulatory-Barriers</u>

Making EcoDistricts - Civic Ecology: <u>http://www.sera-architects.com/blog/wp-</u> content/uploads/documents/Making_EcoDistricts.pdf

AIA 2030 Challenge: http://network.aia.org/2030Commitment/Home

THANK YOU!

Questions / More Information:

Clark Brockman

<u>clarkb@serapdx.com</u>

Principal, Sustainability

SERA www.serapdx.com

Clark Brockman: http://serapdx.com/people/clark-brockman/

Sustainability Resources Group: http://serapdx.com/services/sustainability-resources/

LinkedIn: Clark Brockman Twitter: @clarkbrockman